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Set-Up



The Objective

Detect Treatment Effect
Between two groups (treated vs. control) determine if the

treatment did anything.

Mathematical Formalism
Design an algorithm which builds level-α hypothesis tests for

treatment effect given some user-specified test statistic.

(A level-α test controls the Type I error rate below α.)

Foreshadowing: One procedure with finite sample exactness

under one null with asymptotic conservativeness under other

null (unified inference).
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Notation

N total units (n1 treated & n0 control).

Unit i has outcomes yi(0),yi(1) ∈ Rd and covariates xi ∈ Rk.
(For the sake of this talk, we ignore covariates.)

Zi is the indicator of treatment (1 if treated and 0 if control).

Treatment effect for ith unit is τi = yi(1)− yi(0).

Average treatment effect is τ̄ = N−1
∑N

i=1 τi.

Drop subscripts to denote concatenation: e.g.,

Z = (Z1, . . . ,ZN ).

Allowable treatment allocation set is Ω: e.g.,

ΩCRE = {z ∈ {0, 1}N s.t.
∑

i zi = n1}.
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Some Asymptotic Quantities

The proportion of treated units: n1/N → p ∈ (0, 1).

Limiting variances & covariances are denoted with Σ∞; e.g.,

Σy(1),∞ is limit for treated potential outcomes.
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A Foundational Question

Treatment Effect
Between two groups (treated vs. control) determine if the

treatment did anything.

Competing Definitions:

Fisher’s Sharp Null (HF ) versus Neyman’s Weak Null (HN )
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Fisher’s Sharp Null

No effect means no effect (Rosenbaum)

=⇒
HF : τi = 0 (i = 1, . . . , N).

Alternative hypothesis is HA : ∃ i s.t. τi 6= 0.

Pros

• Randomization inference provides exact tests (i.e., tests are

guaranteed to be level-α for each N ∈ N).

Cons

• Sometimes thought to be a very brittle null.

• Can be misinterpreted by users in practice.
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Neyman’s Weak Null

Treatment did nothing on average

=⇒ HN : τ̄ = 0.

Alternative hypothesis is HA : τ̄ 6= 0.

Pros

• Practitioners rarely misinterpret.

• Less “brittle” than HF .

Cons

• Randomization inference can be anticonservative when

there is treatment effect heterogeneity (i.e., when τi is not

constant for all i). HN does not constrain counterfactuals!
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Refined Objective

1. Let a practitioner pick a test statistic T (y(Z),Z) which is

asymptotically valid for HN .

2. Automatically build a new statistic G(y(Z),Z) based on

T (y(Z),Z).

3. Use FRT with G(y(Z),Z) to test HN asymptotically at

level-α, but retain finite N guarantee of exactness under

HF .

Design a procedure to get finite sample exactness under HF for

free without sacrificing asymptotic inference for HN .
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Gaussian Prepivoting

Main idea: Use the Fisher Randomization Test, but let your

test statistic be the p-value of a large-sample test for HN using

T (y(Z),Z).

Why “prepivoting”?
Beran (1980s) and Chung & Romano (2016) proposed

transforming a test statistic T by an estimate of its distribution

F̂ to get a new statistic F̂ (T ).

• Beran’s objective was asymptotic refinement in iid models.

• We use prepivoting to get asymptotically pivotal quantities

(and stochastic dominance).
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Inference Approaches and Sharp

Dominance



The Observed Difference in Means

For any matrix r ∈ RN×` and w ∈ Ω, we define the function

τ̂(r,W) =
1

n1

N∑
i=1

Wiri −
1

n0

N∑
i=1

(1−Wi)ri.

Special Cases

• τ̂(y(Z),Z) is the treated-minus-controlled difference in

outcome means.

• τ̂(y(Z),W) is the treated-minus-controlled difference in

outcome means after relabeling treatment allocation by W.
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Using the Difference in Means to Test HF

For a statistic T (y(Z),Z) generate the reference distribution:

P̂T (t) =
1

|Ω|
∑
w∈Ω

1 {T (y(Z),w) ≤ t} .

The reference distribution P̂T is the conditional distribution of

T (y(Z),W) given Z with W ∼ Unif(Ω).
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Using the Difference in Means to Test HF

Theorem (Informal)
Under HF the test

ϕT (α) = 1

{
T (y(Z),Z) ≥ P̂−1

T (1− α)
}
.

is exact.

Historically well known result. Driving reason for use of the

Fisher Randomization Test (FRT) with HF .
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Why Does This Work?

In a CRE true (randomization) distribution of a test statistic

T (y(Z),Z) is

RT (t) = P (T (y(Z),Z) ≤ t)

=
∑
w∈Ω

P (Z = w)1 {T (y(w),w) ≤ t}

=
1

|Ω|
∑
w∈Ω

1 {T (y(w),w) ≤ t} .

Under HF the observations y(Z) exactly equals the potential

outcomes y(0) and y(1) =⇒ y(w) = y(Z) for all w ∈ Ω.

Consequence: under HF the true randomization distribution

RT exactly matches the reference distribution P̂T .

In general, RT 6= P̂T under HN due to effect heterogeneity.

Furthermore, P̂T is a random CDF under HN .
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Using the Difference in Means to Test HN

Theorem (Informal (Li & Ding) )
Under HN and mild conditions on the potential outcomes

√
N(τ̂(y(Z),Z)− τ )

d−→ N
(

0,
Σy(1),∞

p
+

Σy(0),∞

1− p
− Στ,∞

)

Because we can’t observe counterfactuals Στ,∞ cannot be

consistently estimated from observed data.

So just use cα as the critical value from N
(
0,

Σy(1),∞
p +

Σy(0),∞
1−p

)
Yields an asymptotically conservative test for HN .
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Fundamental Problem

The critical value from N
(
0,

Σy(1),∞
p +

Σy(0),∞
1−p

)
only gives

asymptotically conservative test; there is no way to get

exactness from that because we used asymptotic distributional

properties of
√
N(τ̂(y(Z),Z)− τ ) to derive the test.

What if we use Fisher Randomization Test to test HN?

Problem: The test can be anticonservative (Type I

error rate substantially exceeds α).
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Classical Solution

Studentize! Estimate variance of τ̂(y(Z),Z) with V̂ and use

T (y(Z),Z) =
τ̂(y(Z),Z)√

V̂
.

Wu & Ding (2020) show that the FRT is exact under HF for

the studentized statistic and also is asymptotically

conservative under HN !

Problem solved?
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Problem Solved? Not Quite.

Does studentizing fix your favorite statistic for HN?

• You need to analyse each statistic and figure out the right

studentizing factor separately (Wu & Ding have lots of

examples).

• Some statistics – even after studentization – aren’t

amenable to the Fisher Randomization Test for HN .

Example: The max absolute t-statistic for multivariate data

T|max|(y(Z),Z) = max
1≤j≤d

√
N |τ̂j |√
V̂jj

.
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A General Framework Through Stochastic Dominance

Suppose

• RT converges weakly to RT,∞

• P̂T converges weakly in probability to PT,∞
• For all continuity points of PT,∞, P̂T (t)

p→PT,∞(t)

Asymptotic Sharp Dominance
T (·, ·) is called asymptotically sharp-dominant if, for all t,

PT,∞(t) ≤ RT,∞(t).
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Why is this useful?

Suppose that T (·, ·) is asymptotically sharp-dominant under

HN , so

PT,∞(t) ≤ RT,∞(t) ∀ t ∈ R.

Then T ’s limiting upper tail probabilities may be upper

bounded by those of PT,∞:

1−PT,∞(t)︸ ︷︷ ︸
p-value under reference

≥ 1−RT,∞(t)︸ ︷︷ ︸
true p-value

∀ t ∈ R.

If T is asymptotically sharp dominant then the FRT is exact

under HF and asymptotically conservative under HN .
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How Do We Make Sharp Dominant T?

Certainly not all test statistics are asymptotically sharp

dominant (e.g., unstudentized difference in means, max absolute

t-statistic, ...).

Question: Is there a way to take a test statistic which is not

asymptotically sharp dominant and make a new statistic that is?

Answer: Prepivoting!
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Prepivoting



A Quick Reminder

Beran’s prepivoting:

1. Take as input a test statistic T ,

2. Form an estimate of T ’s distribution, F̂ ,

3. Transform T by F̂ yielding G = F̂ (T ).

Two Main Ingredients:
Test statistic T and distributional estimator F̂ .
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How Do We Make Sharp Dominant T?

The base statistic T (y(Z),Z) must be of the form

T (y(Z),Z) = fξ̂(
√
Nτ̂),

where ξ̂ and fη satisfy the following conditions over some set Ξ.

Conditions on fη
For any η ∈ Ξ, fη(t) : Rd 7→ R+ is jointly continuous in η and t,

quasi-convex, and nonnegative with fη(t) = fη(−t) for all t ∈ Rd.

Conditions on ξ̂

For W,Z
iid∼ Unif(Ω) and for some ξ, ξ̃ ∈ Ξ,

ξ̂(y(Z),Z)
p→ ξ; ξ̂(y(Z),W)

p→ ξ̃

Most common statistics for HN are of this form!
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Finite Population CLT

In a completely randomized design,
√
N(τ̂− τ̄)

d→ N (0, Vττ ) with

Vττ = p−1Σy(1),∞ + (1− p)−1Σy(0),∞ − Στ,∞.

Wu and Ding (2020)
Under HN , the conditional distribution of

√
Nτ̂(y(Z),W) | Z

in a CRE converges weakly in probability to that of N
(
0, Ṽττ

)
with

Ṽττ = (1− p)−1Σy(1),∞ + p−1Σy(0),∞.

Generally, Ṽττ 6= Vττ , so the reference distribution does not

align with the actual limiting distribution (unless HF holds).
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Conservative Covariance Estimators

We consider covariance estimators V̂ such that

Conditions on V̂

For W,Z
iid∼ Unif(Ω)

V̂ (y(Z),Z)
p→ V̄ = Vττ + ∆; ∆ � 0

V̂ (y(Z),W)
p→ Ṽττ

Example: V̂Neyman(y(Z),Z) := N
(

Σ̂1(y(Z),Z)
n1

+ Σ̂0(y(Z),Z)
n0

)
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Gaussian Prepivoting (Finally)

1. Given a base statistic T (y(Z),Z) = fξ̂(
√
Nτ̂).

2. Compute a conservative covariance estimate V̂ (y(Z),Z).

3. Form the prepivoted statistic

G(y(Z),Z) = γ
(d)

0,V̂

{
a : fξ̂(a) ≤ T (y(Z),Z)

}
.

γ
(d)

0,V̂
denotes the Gaussian measure centered at 0 with

covariance V̂ .
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Interpreting G(y(Z),Z)

Say that a ∼ N
(
0, V̂

)
.

G(y(Z),Z) is the probability that fξ̂(a) lies in

(−∞, T (y(Z),Z)].

Equivalently stated, G(y(Z),Z) is the measure of the set

(−∞, T (y(Z),Z)] under the fξ̂-pushforward of the Gaussian

measure γ
(d)

0,V̂
.

G(y(Z),Z) is just the complement of the p-value for the

large-sample test of HN where you used T (y(Z),Z) as the

statistic.
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Interpreting G(y(Z),Z)

G(y(Z),Z) = γ
(d)

0,V̂

{
a : fξ̂(a) ≤ T (y(Z),Z)

}
.
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Examples

• Absolute difference in means:
√
N ||τ̂ ||.

• Studentized:
(√

Nτ̂
)T

V̂ −1
Neyman

(√
Nτ̂
)

• Incorrectly Studentized:
(√

Nτ̂
)T

V̂ −1
pool

(√
Nτ̂
)

where

V̂Pool =
(
N
n0

+ N
n1

)(
(n1−1)Σ̂y(1)+(n0−1)Σ̂y(0)

n1+n0−2

)
.

• Max absolute t-stat: max1≤j≤d

√
N |τ̂j |√

V̂Neyman,jj
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A Multivariate Simulation of Type I Error Rates

Set-up: Outcomes in R25, CRE (n1 = .2N), α = 0.25.

Hotelling, Pooled Max t-stat

No Pre. Pre. LS No Pre. Pre. LS

Sharp, N = 300 0.251 0.249 0.365 0.254 0.252 0.300

Sharp, N = 5000 0.248 0.243 0.257 0.251 0.247 0.255

Weak, N = 300 0.996 0.361 0.433 0.321 0.071 0.082

Weak, N = 5000 0.990 0.064 0.067 0.308 0.060 0.064

“No Pre.” = FRT without prepivoting.

“Pre.” = FRT after prepivoting.

“LS” = Large Sample test valid for HN (benchmark).
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The Main Theorem

Theorem (C., Fogarty)
Suppose that the potential outcomes and covariates are

sufficiently regular (e.g., limiting finite population means and

covariances exist, bounded “fourth moment”). In a completely

randomized experiment with T (y(Z),Z) = fξ̂(
√
Nτ̂) and V̂ a

conservative covariance estimator the prepivoted statistic

G(y(Z),Z) is asymptotically sharp dominant under HN .

Practical Implication: The FRT using G(y(Z),Z) is

asymptotically conservative under HN and is exact under HF

for all significance levels α ∈ (0, 1).

31



The Main Theorem

Theorem (C., Fogarty)
Suppose that the potential outcomes and covariates are

sufficiently regular (e.g., limiting finite population means and

covariances exist, bounded “fourth moment”). In a completely

randomized experiment with T (y(Z),Z) = fξ̂(
√
Nτ̂) and V̂ a

conservative covariance estimator the prepivoted statistic

G(y(Z),Z) is asymptotically sharp dominant under HN .

Practical Implication: The FRT using G(y(Z),Z) is

asymptotically conservative under HN and is exact under HF

for all significance levels α ∈ (0, 1).

31



Unpacking Why This Works

To prove asymptotic sharp dominance, we need to understand:

• PG,∞, the limit of the reference distributions P̂G

• Show that PG,∞ is the uniform distribution on (0, 1).

• RG,∞, the limit of the true distributions RG.

• Show that RG,∞ is dominated by the uniform distribution

on (0, 1).
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Analyzing PG,∞

Simple concrete case:

• fη(·) = || · ||22 (the general case behaves similarly)

• Ignore covariates for now

Under HN , the conditional distribution of
√
Nτ̂(y(Z),W) | Z

in a CRE converges weakly in probability to that of N
(
0, Ṽττ

)
with

Ṽττ = (1− p)−1Σy(1),∞ + p−1Σy(0),∞.

=⇒ fξ̂(
√
Nτ̂(y(Z),W)) | Z has asymptotic behavior like ||A||22

with A ∼ N
(
0, Ṽττ

)
.
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Analyzing PG,∞

Recall V̂ (y(Z),W)
p−→ Ṽττ

=⇒ γ
(d)

0,V̂
(S) limits to γ

(d)

0,Ṽττ
(S) for

any Borel set S.

Define

S =
{

a ∈ Rd s.t. ||a||22 ≤ ||
√
Nτ̂(y(Z),W)||22

}
S∞ =

{
a ∈ Rd s.t. ||a||22 ≤ ||A||22

}

Asymptotically speaking, G(y(Z),W) = γ
(d)

0,V̂
(S) given Z

behaves like γ
(d)

0,Ṽττ
(S∞).

Punchline: γ
(d)

0,Ṽττ
(S∞) is a fancy way of writing the probability

integral transform (FX(X) is uniform for continuous X!)
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0,Ṽττ
(S) for

any Borel set S.

Define

S =
{

a ∈ Rd s.t. ||a||22 ≤ ||
√
Nτ̂(y(Z),W)||22

}
S∞ =

{
a ∈ Rd s.t. ||a||22 ≤ ||A||22

}

Asymptotically speaking, G(y(Z),W) = γ
(d)

0,V̂
(S) given Z

behaves like γ
(d)

0,Ṽττ
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Analyzing PG,∞

Theorem (C., Fogarty)
Under HN and mild regularity conditions. In a completely

randomized experiment with T (y(Z),Z) = fξ̂(
√
Nτ̂) and V̂ a

conservative covariance estimator the reference distribution of

G(y(Z),Z) limits to the uniform distribution on [0, 1], i.e.,

PG(t)
p−→ t ∀ t ∈ [0, 1].

35



Analyzing RG,∞

Under HN ,
√
Nτ̂(y(Z),Z) in a CRE converges in distribution

to N (0, Vττ ) with

Vττ = p−1Σy(1),∞ + (1− p)−1Σy(0),∞ − Στ,∞.

=⇒ fξ̂(
√
Nτ̂(y(Z),Z)) has asymptotic behavior like ||B||22

with B ∼ N (0, Vττ ).
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Analyzing RG,∞

Recall V̂ (y(Z),Z)
p−→ Vττ + ∆

=⇒ γ
(d)

0,V̂
(S) limits to

γ
(d)
0,Vττ+∆(S) for any Borel set S.

Define

S =
{

a ∈ Rd s.t. ||a||22 ≤ ||
√
Nτ̂(y(Z),Z)||22

}
S∞ =

{
a ∈ Rd s.t. ||a||22 ≤ ||B||22

}

Asymptotically speaking, G(y(Z),Z) = γ
(d)

0,V̂
(S) behaves like

γ
(d)
0,Vττ+∆(S∞).

Punchline: Similar to the probability integral transform, but

notice the conservative covariance!
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Analyzing RG,∞

S∞ =
{

a ∈ Rd s.t. ||a||22 ≤ ||B||22︸ ︷︷ ︸
Vττ

}
versus γ

(d)
0,Vττ+∆(S∞)

If we had matched covariances, then we would be back to

the probability integral transform (so RG,∞ would be the

standard uniform distribution).

By using a overestimate of covariance we overestimate the

probability of S∞ with γ
(d)
0,Vττ+∆(S∞)

=⇒ RG,∞(t) ≥ t ∀ t ∈ [0, 1]. (Anderson’s Theorem - 1955)
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Analyzing RG,∞

Theorem (C., Fogarty)
Under HN and mild regularity conditions. In a completely

randomized experiment with T (y(Z),Z) = fξ̂(
√
Nτ̂) and V̂ a

conservative covariance estimator the true distribution of

G(y(Z),Z) is asymptotically dominated by the uniform

distribution on [0, 1], i.e., RG,∞(t) ≥ t ∀ t ∈ [0, 1].
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Generalizations



Generalizations

• Easy to include covariates:

• Rerandomized designs: Instead of performing a CRE,

randomly select treatment allocation which preserves

covariate balance.

• Asymptotically linear statistics (so regression adjustment

can be included).

• Multiple treatment arms: Gaussian prepivoting can be

applied for experiments with any number A ∈ N of

treatment arms (A ≥ 2).

• Extension to bootstrapping methods!
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Questions?



The Fisher Randomization Test i

Suppose that HF holds, then y(Z) = y(0) = y(1) no matter

what value Z takes. For inference, we need the cumulative

distribution function of the test statistic T (y(Z),Z).

RT (t) = P (T (y(Z),Z) ≤ t)

=
∑
w∈Ω

P (Z = w)1 {T (y(w),w) ≤ t}

=
1

|Ω|
∑
w∈Ω

1 {T (y(w),w) ≤ t}

=
1

|Ω|
∑
w∈Ω

1 {T (y(Z),w) ≤ t} = PT (t).
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The Fisher Randomization Test ii

We want to reject the null when T (y(Z),Z) is larger than some

critical threshold:

• Under HF we don’t want to improperly reject the null with

probability greater than α,

• We want the threshold to be as low as possible so that we

have good detection power.

So cα is determined by inf {c ∈ R s.t. P (T (y(Z),Z) ≥ c) ≤ α} .

This is exactly solved by taking cα = P̂−1(1− α).

Go back.
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Quasi-Convexity

A function f : Rd → R is quasi-convex if ∀x, y ∈ Rd

f(λx+ (1− λ)y) ≤ max{f(x), f(y)} ∀λ ∈ [0, 1].

Equivalently, the sublevel-sets of f must be convex.

Go back.
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Anderson’s Theorem

Anderson’s Theorem (1995) implies:

Theorem (Tong, Thm 4.2.5)
For non-degenerate X ∼ N (0, A) and Y ∼ N (0, B) with A � B

P (Y ∈ S) ≥ P (X ∈ S)

for all measurable convex S that are mirror-symmetric about the

origin.

This is the multivariate generalization of saying “The variance

of univariate centered Gaussians controlls their concentration

near the origin.” Go back.
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Rerandomized Designs

A balance criterion φ : Rk 7→ {0, 1} is an indicator function

such that the set M = {b : φ(b) = 1} is closed, convex,

mirror-symmetric about the origin (i.e. b ∈M ⇔ −b ∈M)

with non-empty interior.

Then define the prepivoted statistic as

G(y(Z),Z) =
γ

(d+k)

0,V̂

{
(a,b)T : fξ̂(a) ≤ T (y(Z),Z) ∧ φ(b) = 1

}
γ

(k)

0,V̂δδ
{b : φ(b) = 1}

.
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